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Abstract: Alzheimer's disease (AD) is a progressive neurological disorder among the elders, which 
results in memory-related issues in subjects. An accurate classification of patients with AD and 
mild cognitive impairment (MCI) from healthy control subjects (HC) based on structural magnetic 
resonance imaging (MRI) is of critical clinical importance. In this paper, good intermediate 
representations of MRI are obtained from a pre-trained convolutional neural network (CNN). 
Principal component analysis (PCA) and sequential feature selection (SFS) are applied for feature 
selection, while a support vector machine (SVM) is adopted to evaluate the classification accuracy. 
422 Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline MRI were used for development 
and validation of our proposed method. As a result, this paper achieved a classification accuracy of 
90% for binary classification of AD and HC, 81% for AD and MCI and 72% for MCI and HC.  

1. Introduction  
AD is a popularly known neurodegenerative disease in the elderly population worldwide, which 

damages the brain cells, and eventually destroys regions of the brain that are responsible for 
memory, learning, thinking, behaviour and other cognitive functions[1]. According to a recent 
estimate, about 5.3 million Americans of all ages were suffering from AD in 2015. The affected 
number is predicted to triple by the year of 2050 [2]. MCI is an intermediate disease stage before 
the onset of early AD, and subjects with MCI have a high risk of developing AD. No treatment has 
been reported so far to reverse or stop the pathological damage of AD on the brain. Structural MRI 
has received considerable attention in supporting the diagnosis of AD.  

So far, many machine learning and computer-aided diagnostics methods have been successfully 
applied to structural MRI analysis to make the diagnosis of different stages of AD more efficient 
and accurate [3-5]. The concepts of deep learning, inspired from the cognitive processes of human 
brains, have shown promising performance in extracting features and learning patterns from 
complex data. It models abstraction from large-scale data at multiple layers, which starts from 
simpler concepts to more abstract ones. Despite the success of traditional machine learning, deep 
learning has several attractive features. First, it can direct uncover features from the training data. 
Therefore, the features don't need to be identified by an expert anymore. As a result, the feature 
selection process can be simplified. Second, the performance of algorithm increases as the scale of 
data increases. Third, deep learning solves the problem end-to-end, and therefore we don't need to 
break the problem down into different parts and solve them individually. 

 A deep network is a high-capacity machine learning model with many hidden layers of artificial 
neurons and millions of parameters. State-of–the-art networks are often trained on the ImageNet 
dataset with over 10 million annotated general images, which is infeasible for most neuroimage 
studies. Questions have been raised about how to train such a model from scratch. A popular way to 
solve this problem is a process called transfer learning, which adopts highly refined features from a 
pre-trained CNN, where the topmost hidden layer is somewhat specialized to the task that it was 
trained for, while the features from intermediate layers accommodate within-class variance and 
possess discriminative information that can be extracted and trained with commonly used classifier 
such as a SVM. This technique can largely reduce the feature learning time and boost the 
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classification ability compared with training a CNN from scratch. 
The aim of this study is to exploit the transfer learning idea into building a CNN to learn 

invariant and more transferable feature from MRI, which can be applied to classify structural brain 
MRI as AD, MCI or HC, aiming for individual patient diagnosis. The rest of this paper is organized 
as follows. We particularize the proposed method in the second part. The results of this study are 
reported in the third part. We discuss the results and conclude the present study in the last part. 

2. Materials and Methods 
2.1. Data 

ADNI [6] is a public–private partnership program launched in 2003 for collecting data of 
candidate biomarkers to promote the development of AD research. The data used in this study were 
selected from the ADNI Grand Opportunity (ADNI-GO) and ADNI-2 studies in ADNI database 
(adni.loni.usc.edu). The subjects are divided into AD (105 patients), MCI (123 patients) and HC 
194 subjects), with average age around 73. Because of the imbalance in the number of subjects in 
each group, 75 randomly selected subjects from each group were designated as the training subjects, 
and the remaining subjects were used for testing. The structural MRI data were collected according 
to the ADNI acquisition protocol using three Tesla scanner. Characteristics of the included subjects 
are summarized in Table 1. 
Table 1 Demographic and behavioral information. MMSE: Mini-Mental State Examination; CDR: 

Clinical Dementia Rating. The values are denoted as mean ± standard deviation. 

 HC Patients with MCI Patients with AD 

Number 194 123 105 

Male/Female 90/104 67/56 59/46 

Age (years) 72.4±4.9 72.1±5.5 74.4±6.2 

Education 16.4±2.3 16.4±2.1 16.0±2.5 

MMSE  29.2±2.1 27.4±1.8 22.9±2.0 

CDR  0.03±0.21 0.55±1.26 0.90±0.41 

2.2. MRI data pre-processing  
The preprocessed steps are performed with a widely used software package Statistical Parametric 

Mapping (SPM 8) (http://www.fil.ion.ucl.ac.uk/spm/, Wellcome Department of Cognitive 
Neurology, University College London, UK) that is implemented on MATLAB 7.6 (Mathworks, 
Natick, MA, USA) environment. All parameters were left at their default values unless specified. 
The raw MRIs were first inspected to verify they were free from anatomical abnormalities, and 
were approximately aligned with Montreal Neurological Institute (MNI) space. Then, tissue 
segmentation was achieved using the New Segment toolbox under the SPM8 distribution, which is 
essentially the same as the Unified Segmentation model, except for a different treatment of the 
mixing proportions. T1 images are segmented into three main classes: grey matter (GM), white 
matter (WM) and cerebrospinal fluid (CSF). After that, the registration algorithm, Diffeomorphic 
Anatomical Registration Through Exponential Lie Algebra (DARTEL) [7] imported GM generated 
in the previous step and iteratively generated flow fields and a series of template images. GM maps 
are then modulated by the Jacobian determinants to ensure that regional differences in the total 
amount were conserved, smoothed using an 8-mm full-width-at-half-maximum (FWHM) Gaussian 
kernel, and normalized to their average templates and further to the Dartel template in MNI space. 
The voxel size of normalized data is 2*2*2 mm3. 
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2.3. Features from AlexNet  
In this work, we used the AlexNet [8] architecture, which was trained on a very large dataset 

containing about one million images labelled with 1000 categories. The dimensions of the smoothed, 
modulated, normalized GM maps were scaled with trilinear interpolation to 227×227×65 (65 slices 
of size 227×227 for each subject), which matches the size of the input layer in AlexNet. Then, the 
images were exported in a lossless PNG format from NIfTI format. This step produced a total 
number of 27430 images, with 6825 belonging to the AD group, 7995 belonging to the MCI group, 
and the remaining 12610 belonging to the HC group. 

Table 2 The Data and Parameters Dimension of AlexNet. 
Layers Kernel size Number of kernels Number of bias Total 
Conv1 11 × 11 × 3 96 96 34,944 
Conv2 5 × 5 × 48 256 256 307,456 
Conv3 3 × 3 × 256 384 384 885,120 
Conv4 3 × 3 × 192 384 384 663,936 
Conv5 3 × 3 × 192 256 256 442,624 

FC1 6 × 6 × 256 
× 4096 1 4096 37,752,832 

FC2 4096 × 4096 1 4096 16,781,312 
FC3 4096 × 1000 1 4096 4,097,000 

 

 

Figure 1 Network Structure 
The architecture of the model was described previously[8], which is composed of eight layers: 

five convolutional layers followed by three fully connected layers (Figure 1). The first 
convolutional layer takes as input the image of size 227×227×3, where three is the number of 
channels for RGB images. Every convolutional layer is set up by four steps, which are sorted as 
convolution, ReLU, pooling and normalization. Kernel size and kernel number of each 
convolutional layer and the size of weight matrix of each fully-connected layer are listed in the 
Table 2. By using transfer learning, the considerable cost of developing large CNNs can be avoided. 
The features extraction was based on Caffe [9], an efficient framework exploited by Berkeley 
Vision and Learning Center (BVLC). The intermediate layers capture features that are neither too 
specific to the dataset the network was originally trained on, nor too general to not contain any 
representative information from images. Features from conv3, conv4 and conv5 of the AlexNet 
were extracted using the pre-trained network. For the conv3 and conv4 which do not have a pooling 
layer followed, we perform overlapping max-pooling within 3 × 3 regions and step size of 2 to get 
the final feature vectors. The features from 65 slices of each subject were concatenated together to 
form the feature representation of the subject. 

2.4. Feature selection and SVM  
The concatenated feature maps still have too many features; principal component analysis (PCA) 

and sequential feature selection (SFS) were used for the precise selection of the best features. In this 
work, we use the average miss-classification error (MCE) of 10-fold cross-validation with a 
supervised SVM classifier as the objective function of the search. The forward search is used 
because the number of selected features (p = 20) is much fewer than the total PCs. SVM 
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implementation was taken from the LibSVM toolkit [10]. As the performance obtained with the 
features extracted was optimal using the linear kernel, we had not explored additional higher 
dimensional kernels in this study. To give an overall evaluation of the proposed method, besides the 
prediction accuracy (ACC), we also utilize sensitivity (SEN) and specificity (SPE). 

3. Results 

 

Figure 2 Comparison of classification performance for features extracted from Conv3, Conv4 and 
Conv5 of a pre-trained AlexNet. 

We examined performance of three convolutional layers (Conv3, Conv4 and Conv5) for 
discrimination of patients with AD from HC subjects without any feature selection (Figure 
2). There were not any statistically significant differences between mean classification 
performances of those layers as determined by one-way ANOVA (p=0.633). For the rest of this 
study, we used the features extracted from the conv3 layer. Table 3 displays the overall 
performances of the conv3 layer. Feature selection has improved the accuracy from 88% to 90%. 

Table 3 Performance of conv3 after feature selection 

 Accuracy Sensitivity Specificity 
AD vs HC 90% 87% 91% 

AD vs MCI 81% 70% 88% 
MCI vs HC 72% 69% 74% 

4. Discussion 
One interesting finding in this study was that three convolutional layers offer close performance. 

Images from the ImageNet dataset consist of 1000 categories, while the MRI images of our AD 
dataset contain relatively simple and uniform patterns with slight variations. In this sense, deep 
learning architecture with three or four layers may be sufficient to capture the high-level 
abstractions. This is the reason why we select conv3 for feature reduction.  

In this paper, we present a new classification method to automatically discriminate patients with 
AD (or MCI) from HC based on MRI data. The feature parameters that showed a discriminating 
power between patients with AD, MCI and HC were extracted from a pre-trained AlexNet, and we 
used this feature parameter to create a classifier that can predict a subject's group. Accuracy for 
classification on AD and HC reaches 90%. Overall, our method has obtained a competitive result 
compared to previous studies in the literature. Although the proposed approach showed the 
favorable results, it has downsides as well. The difference between ordinary images and MRI is 
huge. Not only the colours, but also objectiveness in the two domains is quite different. Generic 
features in pertained CNN models may not be the best features for an AD classification task. Thus, 
images needed to fine-tune a CNN trained on ordinary image set to MRI based AD classification is 
still large. One important future direction is to use unsupervised learning strategy, such as 
generative adversarial networks (GAN) which reduce the amount of required training samples in 
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fine-tuning a CNN. 
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